PG & RESEARCH DEPARTMENT OF MATHEMATICS

COURSE OUTCOME:

- Develop and maintain problem-solving skills
- Use mathematical ideas to model real-world problems
- Be able to communicate MATHEMATICAL ideas with others
- Have experience using technology to address mathematical ideas
- > Students will demonstrate the ability to solve financial maths problems
- Students will demonstrate understanding of the mathematical basis of common algorithms, and the ability to calculate accurately and efficiently.
- Students will demonstrate the ability to solve exponential growth and decay problems
- Students will demonstrate the ability to solve problems, including applications outside of mathematics, by means of intuition, creativity, guessing and the experience gained through...
- ➢ Ability to solve basic problems in probability and statistics
- ➢ Able to recognize and learn the importance of life-long learning.

PROGRAM OUTCOMES:

- ▶ Inculcate critical thinking to carry out scientific investigation objectively
- \succ without being biased with preconceived notions.
- ➢ Equip the student with skills to analyze problems, formulate an hypothesis, evaluate and validate results, and draw reasonable conclusions thereof.
- Prepare students for pursuing research or careers in industry in mathematical sciences and allied fields
- Able to apply the knowledge of mathematical science to solve real life problems.
- \triangleright Able to design the methodology suitable to the problem encountered.
- Able to analyse and interpret outputs and generate new ideas based on the outputs.
- ➤ Able to utilize, gather and generate information.
- \succ Able to lead, work in team and give priority to the success of team.
- ➢ Able to recognize and learn the importance of life-long learning.

PROGRAM SPECIFIC OUTCOME:

Communicate effectively by oral, written, computing and graphical means.

- Recognize the need to engage in lifelong learning through continuing education and research
- Apply the knowledge of mathematical concepts in interdisciplinary fields.Provide advanced knowledge on topics in pure mathematics, empowering the
- ➤ students to pursue higher degrees at reputed academic institutions
- Create a hypothesis and appreciate how it relates to broader theories.
- Evaluate hypotheses, theories, methods and evidence within their proper contexts.
- Understand the nature of abstract mathematics and explore the concepts in further details.
- Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematical sciences.
- Create awareness to become an enlightened citizen with commitment to deliver one's responsibilities within the scope of bestowed rights and privileges.
- Critically interpret data, write reports and apply the basics of rules of evidence.
- Select, interpret and critically evaluate information from a range of sources that include books, scientific reports, journals, case studies and the internet.

S NO	SEMESTER	COURSE NAME	LEARNING OUTCOME
1	Ι	ALGEBRA	 To develop a strong foundation in algebra that provide a basic for advanced studies not only in mathematics. But also in other branches like engineering, physics and computers, etc. Particular attention is given to canonical forms of linear transformations, diagonalizations of linear transformations, matrices and determinants.
2	Ι	REAL ANALYSIS	 To develop a deeper and more rigorous understanding of calculus including defining terms and proving theorems about functions, sequences, series, limits, continuity and derivatives.

COURSE OUTCOME :

			 The course will develop specialized techniques in problem solving.
3	Ι	MECHANICS	 The objective of this course is to understand the Lagrangian and Hamiltonian equations for dynamical systems.
4	Ι	ODRINARY DIFFERENTIAL EQUATION	 This course is to equip the students with knowledge of some advanced concepts related to ordinary differential equations To understand the concepts related to the solution of ordinary differential equations.
5	Ι	NUMERICAL ANALYSIS	 To make the students familiarize with the ways of solving complicated mathematical problems numerically. To provide numerical methods for solving the non-linear equations, interpolation, differentiation, integration, ordinary and partial differential equations. Describing and understanding error analysis in numerical methods.
6	Π	ADVANCED ALGEBRA	 To introduce the basic ideas of counting principle, Sylow subgroups, finite abelian groups,field theory. Galois Theory and to see its application to the solvability of polynomial equations by radicals.
7	Π	ADVANCED REAL ANALYSIS	 To develop a deeper and more rigorous understanding of calculus including defining terms and proving theorems. About sequence and series of functions, integration, special functions and multivariable calculus. The course will develop specialized techniques in problem solving.
8	Π	PARTIAL DIFFERENTIAL EQUATION	 The objective of this course is to enable the students to understand the concepts related to the solution of partial differential equations arising in various fields.
9	П	HUMAN RIGHTS	 understand the historical growth of the idea of human rights

			 demonstrate an awareness of the international context of human rights
10	Π	EDC	 Learn how to start an enterprise and design business plans those are suitable for funding by considering all dimensions of business. Understand entrepreneurial process by way of studying different case studies and find exceptions to the process model of entrepreneurship Run a small enterprise with small capital for a short period and experience the science and art of doing business
11	Π	DISCRETE MATHS	 To understand the basic ideas of logic, proof methods and strategy, the growth of functions, counting techniques, pigeonhole principle, recurrence relations. Solving recurrences using generating functions, Boolean functions, apply Boolean algebra to circuits and gatting networks, use finite state-machines to model computer operations.
12	III	COMPLEX ANALYSIS	 To learn the various intrinsic concepts and the theory of Complex Analysis. To study the concept of Analyticity, Complex Integration and Infinite Products in depth.
13	III	TOPOLOGY	 To study the concepts concerned with properties that are preserved under continuous deformations of objects. To train the students to develop analytical thinking and the study of continuity and connectivity.
14	III	MEASURE THEORY	 To generalize the concept of integration using measures. To develop the concept of analysis in abstract situations

15	III	CALCULUS OF VARIATION AND INTEGRAL EQUATION	 To introduce the concept of calculus of variations and integral equations and their applications. To study solution of Fredholm & Volterra integral equations through different methods.
16	Ш	PROGRAMMING WITH C++	 The objective of this course is to introduce the basic knowledge of one of the programming language of C++.
17	IV	FUNCTIONAL ANALYSIS	 To study the three structure theorems of Functional Analysis viz., Hahn- Banach theorem, Open mapping theorem and Uniform boundedness principle. To introduce Hilbert spaces and operator theory leading to the spectral theory of operators on a Hilbert space.
18	IV	PROBABLITY THEORY	 To understand the concepts and results related to probability, random events. To understand various distributions and applications. To know the standard results related to probability & distribution.
19	IV	GRAPH THEORY	 To give a rigorous study of the basic concepts of Graph Theory. To study the applications of Graph Theory in other disciplines.
20	IV	LAB- C++ PROGRAMMING	 Area computation using derived class.
21	IV	PROJECT	 Prepare students for pursuing research or careers in industry in mathematical sciences and allied fields Imbibe effective scientific and/or technical communication in both oral and writing